Simulating soil freeze/thaw dynamics with an improved pan-Arctic water balance model
نویسندگان
چکیده
[1] The terrestrial Arctic water cycle is strongly influenced by the presence of permafrost, which is at present degrading as a result of warming. In this study, we describe improvements to the representation of processes in the pan-Arctic Water Balance Model (PWBM) and evaluate simulated soil temperature at four sites in Alaska and active-layer thickness (ALT) across the pan-Arctic drainage basin. Model improvements include new parameterizations for thermal and hydraulic properties of organic soils; an updated snow model, which accounts for seasonal changes in density and thermal conductivity; and a new soil freezing and thawing model, which simulates heat conduction with phase change. When compared against observations across Alaska within differing landscape vegetation conditions in close proximity to one another, PWBM simulations show no systematic soil temperature bias. Simulated temperatures agree well with observations in summer. In winter, results are mixed, with both positive and negative biases noted at times. In two pan-Arctic simulations forced with atmospheric reanalysis, the model captures the mean in observed ALT, although predictability as measured by correlation is limited. The geographic pattern in northern hemisphere permafrost area is well estimated. Simulated permafrost area differs from observed extent by 7 and 17% for the two model runs. Results of two simulations for the periods 1996–1999 and 2066–2069 for a single grid cell in central Alaska illustrate the potential for a drying of soils in the presence of increases in ALT, annual total precipitation, and winter snowfall.
منابع مشابه
Simulating pan-Arctic runoff with a macro-scale terrestrial water balance model
A terrestrial hydrological model, developed to simulate the high-latitude water cycle, is described, along with comparisons with observed data across the pan-Arctic drainage basin. Gridded fields of plant rooting depth, soil characteristics (texture, organic content), vegetation, and daily time series of precipitation and air temperature provide the primary inputs used to derive simulated runof...
متن کاملThe role of snow cover affecting boreal-arctic soil freeze–thaw and carbon dynamics
Northern Hemisphere permafrost affected land areas contain about twice as much carbon as the global atmosphere. This vast carbon pool is vulnerable to accelerated losses through mobilization and decomposition under projected global warming. Satellite data records spanning the past 3 decades indicate widespread reductions (∼ 0.8– 1.3 days decade) in the mean annual snow cover extent and frozen-s...
متن کاملThe role of snow cover affecting boreal-arctic soil freezeâ•fithaw and carbon dynamics
Northern Hemisphere permafrost affected land ar eas contain abont twice as mnch carbon as the global at mosphere. This vast carbon pool is vnlnerable to acceler ated losses throngh mobilization and decomposition nnder projected global warming. Satellite data records sparming the past 3 decades indicate widespread redactions ( ~ 0.81.3 days decade “ ̂ ) in the mean aimnal snow cover extent and...
متن کاملThe Effect of Freeze-Thaw Conditions on Arctic Soil Bacterial Communities
Climate change is already altering the landscape at high latitudes. Permafrost is thawing, the growing season is starting earlier, and, as a result, certain regions in the Arctic may be subjected to an increased incidence of freeze-thaw events. The potential release of carbon and nutrients from soil microbial cells that have been lysed by freeze-thaw transitions could have significant impacts o...
متن کاملThe Effects of Concrete Pavement Mix Design Parameters on Durability under Freeze and Thaw Condition
This paper is based on an experimental research that examined the effects of concrete`s major parameters on durability of concrete pavements and curbs under freezing and thawing cycles. These parameters include concrete mix design parameters such as water-cement ratio, fine aggregate percentage and using air entraining admixture and simulating real freeze-thaw cycles that infrastructures underg...
متن کامل